Основная страница | Живая Этика | Работа в школе (математика) | История обновлений | Фотографии | Полезные ссылки
Районная математическая олимпиада 2004г.
Задачи 9 кл.
ноябрь 2004г.
г.Новосибирск
1. Найти количество натуральных чисел, не превосходящих 1000, не делящихся ни на 7, ни на 11.
2. На листе бумаги написаны тридцать три минуса. За один раз можно изменить любые четыре из уже написанных знаков на противоположные - минус на плюс и наоборот. Можно ли за несколько раз добиться, чтобы все знаки стали плюсами?
3. Расставить на шахматной доске 8 на 8 клеток несколько коней так, чтобы каждый из них бил ровно четырёх других.
4. В выпуклом четырёхугольнике ABCD углы А и D равны, а серединные перпендикуляры к сторонам АВ и CD пересекаются на стороне AD. Доказать, что АС=BD.
5. Найти все простые числа р такие, что числа р +10 и р + 14 также просты.